bg-header

Apprentissage statistique : modélisation descriptive et introduction aux réseaux de neurones

6 ECTS RCP208

Nombre de crédits
6 ECTS

Durée de la formation
60 heures

Modalité
E-learning (FOAD)

objectifs de la formation

Ce cours donne des éléments de base de l'analyse des données et de la modélisation descriptive, ainsi que des principes à mettre en œuvre pour traiter des applications réelles. Une introduction à la modélisation décisionnelle avec des réseaux de neurones est également présentée. L'analyse des données et la modélisation descriptive aident à comprendre les données empiriques issues de phénomènes naturels, économiques ou socio-culturels. Cette compréhension facilite la mise en œuvre de méthodes performantes de construction de modèles décisionnels.
Les méthodes abordées ont de très nombreuses applications dans des domaines aussi divers que l'assurance qualité, les enquêtes d'opinion, le marketing, la gestion de la relation client, la climatologie, la sécurité, etc.
L'enseignement adopte une approche pragmatique, les séances de travaux pratiques permettant la mise en œuvre systématique des méthodes présentées.
Les unités d'enseignement RCP209 « Apprentissage statistique : modélisation décisionnelle et apprentissage profond », RCP211 « Intelligence artificielle avancée » et RCP217 « Intelligence artificielle pour des données multimédia » sont des suites recommandées de RCP208.

compétences et débouchés

Analyse des données, modélisation descriptive à partir de données, introduction à la modélisation décisionnelle avec application à la reconnaissance des formes et à la fouille de données.

prérequis

Cet enseignement s'adresse aux auditeurs souhaitant acquérir des connaissances de base sur l'analyse des données, la reconnaissance des formes et la fouille de données (data mining).
Prérequis obligatoires : avoir suivi le cycle préparatoire de l'EICNAM ou avoir un niveau équivalent (licence).

programme de la formation

Les thèmes abordés dans les séances de cours et de travaux pratiques (TP) sont :

• Applications, nature des problèmes de modélisation et spécificités des données.
• Analyse des données, réduction de dimension : méthodes factorielles.
• Réduction non-linéaire de dimension : UMAP, t-SNE.
• Sélection de variables.
• Classification automatique : k-moyennes, DBSCAN.
• Estimation de densités : noyaux, modèles de mélange.
• Imputation des données manquantes.
• Réseaux de neurones multi-couches : architectures, capacités d'approximation, apprentissage et régularisation, explicabilité.

Chaque séance de cours est suivie d'une séance de TP permettant de mettre en œuvre les méthodes présentées.
Les TP sont réalisés en utilisant principalement la plateforme Scikit-learn. Une introduction rapide au langage Python, à NumPy, à matplotlib et à Scikit-learn est prévue lors des premières séances de TP.

diplôme(s) associé(s)

Information non disponible, pour plus d'information veuillez contacter le cnam

Méthodes pédagogiques

Modalité Présentiel

Les cours en présentiel : ils ont lieu en présence des élèves et de l’enseignant dans un centre Cnam :

  • hors temps de travail (HTT)c'est à dire le soir (souvent à partir de 18h30) ou le samedi,
  • en journée (au rythme d'un cours par semaine ou bien de quelques journées bloquées dans le semestre).

Aucun cours n’est enregistré ni diffusé via Internet. La présence physique des élèves est nécessaire.

Les examens se déroulent exclusivement dans le centre Cnam où se déroulent les cours.

Modalité Hybride

La modalité hybride est une combinaison entre :

  • des regroupements en salle à présence physique indispensable (non diffusés via Internet et non enregistrés),
  • des webconférences régulières à présence fortement conseillée,
  • des activités distantes via la plateforme d’enseignement à distance pouvant prendre la forme de :
    • la mise à disposition de ressources pédagogiques formalisées (cours magistraux : notions et concepts),
    • des travaux à réaliser tutorés (activités pédagogiques : exercices, cas, lectures, rédaction de notes, de dossiers qui font écho aux ressources pédagogiques et/ou aux activités réalisées dans le cadre des regroupements physiques, forums …),
    • des travaux personnels non tutorés.

Modalité Foad

La modalité Foad est parfaitement adaptée à votre disponibilité :

  • des webconférences régulières à présence indispensable (accessibles en direct via internet, enregistrées pour visualisation en différé),
  • des activités distantes via la plateforme d’enseignement à distance pouvant prendre la forme de :
    • la mise à disposition de ressources pédagogiques (cours, exercices, cas),
    • des travaux à réaliser tutorés via la plateforme d’enseignement à distance,
    • des travaux personnels non tutorés.

méthode d'évaluation

Examen ; certaines questions peuvent porter sur les travaux pratiques.

Equivalences, passerelles & suite de parcours

En savoir plus sur les équivalences, passerelles & suite de parcours

financez votre formation

En savoir plus sur nos modes de financement


Mis à jour le : 17-11-2024
S'inscrire !