Nombre de crédits
6 ECTS
Durée de la formation
60 heures
Modalité
-
Cet enseignement s'intéresse à l'impact des caractéristiques des données massives (volume, variété, vélocité) sur les méthodes de fouille de données. Sont examinées les approches actuelles qui permettent de faire passer à l'échelle les méthodes de fouille, en insistant sur les spécificités des opérations de fouille en environnement distribué.
Les caractéristiques mentionnées sont ensuite considérées de façon plus spécifique pour certains problèmes fréquents dans le traitement des données massives. Sont ainsi abordés les systèmes de recommandation et la recherche efficace par similarité, la classification automatique et l'apprentissage supervisé sur une plate-forme distribuée, les opérations spécifiques au traitement des données textuelles souvent hétérogènes, les implications de la vélocité sur la fouille de flux de données, l'analyse de grands graphes et de réseaux sociaux.
L'UE s'intéresse également au rôle de la visualisation et de l'interaction, non seulement dans la présentation des résultats mais aussi dans les opérations de fouille de données.
Capacité à mettre en oeuvre des techniques de fouille de données, de modélisation décisionnelle et de visualisation sur des données massives. Maîtrise de techniques adaptées à quelques problèmes fréquents rencontrés dans la fouille de données massives.
Bonnes connaissances mathématiques et statistiques générales, maîtrise de méthodes statistiques pour la fouille de données, connaissance de techniques de gestions de données massives faiblement structurées, connaissance de techniques de passage à l'échelle par distribution. Capacité à utiliser le système d'exploitation Linux, connaissance d'au moins un langage de programmation.
Vous êtes encouragés à évaluer votre capacité à suivre cette UE en répondant au questionnaire en ligne accessible sur http://cedric.cnam.fr/vertigo/Cours/RCP216/questionnaire.html. Vous pouvez répondre sans vous identifier, les réponses vous sont données immédiatement et les résultats ne sont pas enregistrés.
1. Introduction : applications, typologie des données, typologie des problèmes
2. Approches : réduction de la complexité, distribution
3. Passage à l'échelle de quelques problèmes fréquents
a. Recherche par similarité, systèmes de recommandation
b. Classification automatique
c. Fouille de données textuelles
d. Fouille de flux de données
e. Apprentissage supervisé à large échelle
f. Fouille de graphes et réseaux sociaux
4. Visualisation d'information : historique, applications, outils
5. Enjeux perceptifs de la visualisation d'information : couleurs, formes, immersion, lecture
6. Techniques de représentations : graphes, hiérarchies, lignes de temps
7. Techniques d'interaction : association focus/contexte, distorsion, filtrage
Le cours est complété par des travaux pratiques (TP) permettant de mettre en pratique des techniques présentées. Pour la partie fouille de données, les TP seront réalisés à l'aide de Apache Spark. Pour le travail sur le projet, l'auditeur devra installer le logiciel Spark (gratuit) sur un ordinateur personnel de capacité suffisante, suivant les instructions disponibles en ligne.
Les supports de cours et de TP, ainsi que d'autres explications concernant le déroulement de l'UE sont accessibles à partir de http://cedric.cnam.fr/vertigo/Cours/RCP216/
Les cours en présentiel : ils ont lieu en présence des élèves et de l’enseignant dans un centre Cnam :
Aucun cours n’est enregistré ni diffusé via Internet. La présence physique des élèves est nécessaire.
Les examens se déroulent exclusivement dans le centre Cnam où se déroulent les cours.
La modalité hybride est une combinaison entre :
La modalité Foad est parfaitement adaptée à votre disponibilité :
Note finale = ((note de projet + note d'examen) / 2).