bg-header

Modélisation statistique

9 ECTS STA110

Nombre de crédits
9 ECTS

Durée de la formation
90 heures

Modalité
-

objectifs de la formation

Maîtriser les outils de la modélisation statistique (sélection de modèles, validation, interprétation) dans un contexte général (données continues, discrètes, qualitatives, mixtes) via l'utilisation de méthodes paramétriques (modèles linéaires et modèle linéaire généralisé) ou non-paramétriques.

Acquérir des connaissances ainsi qu'un savoir-faire dont l'objectif est de traiter un problème concret par une approche de modélisation (applications à des données réelles).

Mettre en œuvre cette modélisation à l'aide d'un logiciel de modélisation statistique avancé (logiciel R) et savoir interpréter les résultats obtenus.

compétences et débouchés

Statisticien modélisateur

prérequis

Avoir le niveau de l'unité d'enseignement : STA. 103 (calcul des probabilités) et STA001 (Techniques de la statistique)

programme de la formation

I) Méthodes paramétriques

Régression linéaire simple et multiple : modèle, moindres carrés, estimations, intervalles de confiance, tests, colinéarité, sélection de variables, validation, prédiction, interprétation. Recherche de points (aberrants, influents, atypiques et de points leviers).

Analyse de la Variance : à 1 facteur (mesures indépendantes, répétées) et à 2 facteurs (mesures indépendantes)

Analyse de la Covariance (modèles, comparaison à la régression linéaire et à l'anova à 1 facteur à mesures indépendantes, paradoxe de Lord)

Régression logistique : modèle probit et logit, estimations, tests, sélection de modèles, validation, prédiction.

Modèle linéaire généralisé (regression de Poisson, modèle polytomique)

Introduction à la modélisation Bayésienne
Introduction à l'analyse de séries temporelles


II) Méthodes non-paramétriques

Régression spline

Estimateurs par moyennes locales (estimateurs à noyau)

Régression polynomiale locale


L'enseignement comporte une initiation au logiciel R et une mise en oeuvre de ce logiciel dans diverses applications.

diplôme(s) associé(s)

Information non disponible, pour plus d'information veuillez contacter le cnam

Méthodes pédagogiques

Modalité Présentiel

Les cours en présentiel : ils ont lieu en présence des élèves et de l’enseignant dans un centre Cnam :

  • hors temps de travail (HTT)c'est à dire le soir (souvent à partir de 18h30) ou le samedi,
  • en journée (au rythme d'un cours par semaine ou bien de quelques journées bloquées dans le semestre).

Aucun cours n’est enregistré ni diffusé via Internet. La présence physique des élèves est nécessaire.

Les examens se déroulent exclusivement dans le centre Cnam où se déroulent les cours.

Modalité Hybride

La modalité hybride est une combinaison entre :

  • des regroupements en salle à présence physique indispensable (non diffusés via Internet et non enregistrés),
  • des webconférences régulières à présence fortement conseillée,
  • des activités distantes via la plateforme d’enseignement à distance pouvant prendre la forme de :
    • la mise à disposition de ressources pédagogiques formalisées (cours magistraux : notions et concepts),
    • des travaux à réaliser tutorés (activités pédagogiques : exercices, cas, lectures, rédaction de notes, de dossiers qui font écho aux ressources pédagogiques et/ou aux activités réalisées dans le cadre des regroupements physiques, forums …),
    • des travaux personnels non tutorés.

Modalité Foad

La modalité Foad est parfaitement adaptée à votre disponibilité :

  • des webconférences régulières à présence indispensable (accessibles en direct via internet, enregistrées pour visualisation en différé),
  • des activités distantes via la plateforme d’enseignement à distance pouvant prendre la forme de :
    • la mise à disposition de ressources pédagogiques (cours, exercices, cas),
    • des travaux à réaliser tutorés via la plateforme d’enseignement à distance,
    • des travaux personnels non tutorés.

méthode d'évaluation

L'évaluation se fera uniquement sous la forme de projets consistant en l'application des différentes méthodes de modélisation sur des données réelles.

Equivalences, passerelles & suite de parcours

En savoir plus sur les équivalences, passerelles & suite de parcours

financez votre formation

En savoir plus sur nos modes de financement


Mis à jour le : 17-11-2024
S'inscrire !